Observation of WW+WZ production in a semileptonic decay at CDF

Martina Hurwitz University of Chicago

Fermilab seminar January 12, 2010

Outline

- Motivation for diboson measurements: Higgs search at Tevatron
- WW+WZ in lepton + jets
 - Event selection
 - Background modeling
 - Matrix element analysis
 - Likelihood fit and systematics
 - Results

Standard Model Higgs Boson

- Standard Model
 - Fermions: six leptons and six quarks
 - $-SU(3) \times SU(2) \times U(1)$ gauge group

Electroweak theory

- $m_v = 0$, $m_w \sim 80$ GeV, $m_z \sim 90$ GeV
 - Electroweak symmetry is broken

- Higgs mechanism
 - W, Z acquire masses from degrees of freedom of field
 - Fermions acquire masses through Yukawa coupling with field
 - Predicts existence of Higgs boson

What do we know about the Higgs?

- Direct search at LEP: m_H > 114 GeV
- Indirect searches (through radiative corrections to W mass): m₁ < 157 GeV
- Tevatron contribution: 163 ≤ m₁ < 166

All at 95% C.L.

Tevatron

- $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Stable operation over last several years → large datasets

Progress at the Tevatron

Larger datasets → probe smaller cross sections

What goes into the Higgs limit?

Example: WH → lvbb at CDF

- Sensitive channel at low mass: identified lepton and b-tagging effectively reduce backgrounds
- Sensitive analysis includes
 - High signal acceptance (e.g. add new triggers)
 - Multivariate techniques: matrix element and neural network
 - Separation of channels
 according to different signal to-background ratios (e.g. two
 b-tagged jets vs 1 b-tagged
 jet)

A lot of sophisticated techniques are used in the Higgs limits. Prove we understand them by measuring known processes.

Higgs → "Dibosons"

- In this talk, "dibosons" = WW, WZ
 Semileptonic = one boson decays to quarks, the other to leptons
- Semileptonic diboson decays have similar topology to sensitive channels in low-mass Higgs search

- Similar experimental challenges
- Important difference:
 No b-tagging (yet)

Diboson measurements at Tevatron

Fully leptonic decays

- Both bosons leptonic: W→lv, Z→ll or Z→vv
 - Low branching ratios, but "clean" signatures at a hadronic collider
- WW, WZ, ZZ in leptonic modes have been observed at the Tevatron
 - Cross sections in good agreement with Standard Model predictions
 - Set limits on new physics contributing to TGCs

Semileptonic decays

- One boson hadronic:
 W→qq', Z→qq
 - Higher branching ratios but large backgrounds
- Recent results
 - First observation in channel with large missing energy and jets (CDF)
 - Observation in channel with identified lepton and jets
 (CDF)
 - Previously evidence (D0)
 - Limits on TGCs (D0)

Higgs and diboson rates

Prediction for Tevatron Run II at √s = 1.96 TeV

Apparatus: CDF detector

Dataset: 4.6 fb⁻¹ collected through summer 2009

WW+WZ → lvjj

- High p_T isolated electron or muon + two jets + large missing transverse energy
- Signal has dijet resonance
 - We don't try to distinguishW→jj from Z→jj
 - From σ*B.R., expect ~85%
 of signal from WW

Triggers

Trigger

- High p_T central electron and muon triggers
- Thanks to efforts in Higgs and single top searches → MET + jets trigger improves muon acceptance

Three channels: central electrons, central muons, extended muons

Backgrounds

- W+jets: similar to signal → large
- QCD multi-jet (non-W): jet fakes a lepton and there is large fake MET → fairly small, reduce with vetos on transverse mass of leptonic W candidate, angles of MET and jets
- Z+jets: miss a lepton → small, reduce with veto on additional leptons
- t̄t: miss a lepton or a few jets → small, reduce with veto on additional jets
- Single top: small

Background modeling

We need to understand the normalization and kinematics of the backgrounds: use MC modeling

- W/Z+jets: Alpgen + Pythia
- QCD multi-jet: data with loosened lepton selection
- Signals and top backgrounds:
 Pythia

Background normalization

- How many background events enter our sample?
 - Dependent on background's production cross section, selection efficiency, and luminosity
- MC-driven: Z+jets, tt, single top
 - Trust theoretical/measured cross sections and Monte Carlo models
- Data-driven: QCD multi-jet, W+jets
 - Not clear how to derive normalizations from models
 - QCD multi-jet: from fit to MET spectrum
 - W+jets: preliminary estimate from MET fit

Missing Transverse Energy [GeV]

Fermilab, 01/12/2010

Expected event yields

Process	Central electrons	Central muons	Extended muons
WW	591 ± 50	523 ± 51	148 ± 13
WZ	84 ± 9	83 ± 10	29 ± 3
W+jets	16708 ± 394	15774 ± 260	3155 ± 70
QCD multi-jet	959 ± 384	443 ± 177	112 ± 45
Z+jets	304 ± 38	1071 ± 144	325 ± 41
tt	120 ± 17	109 ± 16	64 ± 9
Single top	121 ± 18	108 ± 16	47 ± 7
ZZ	1 ± 0.2	4 ± 0.7	2 ± 0.3

Total predicted signal events: 1458

Total predicted background events: 39427

S/JB = 7.3

Background modeling

- Modeling of the shape (kinematics) for the backgrounds (especially W+jets) is crucial
 - They are large
 - We use the modeling to estimate efficiencies of cuts
 - We will use the models to make templates of our discriminant to extract the signal
- Validate modeling of kinematics by comparing data and MC
- Start thinking about systematic uncertainties
 - If we observe mismodeling, is it covered by a systematic?
 - We will impose systematic uncertainties on shape of W+jets discriminant due to
 - Jet energy scale (JES)
 - Factorization and renormalization (Q²) scale
 - Mismodeling that's not covered by these uncertainties

Lepton, MET

Data / MC agreement is good → QCD multi-jet model is OK

Jet E_T

Disagreement between data and MC is covered by JES and Q² uncertainty

Dijet modeling

Resonance decaying to two jets is major difference between signal and background ΔR (angular distance between jets) and M_{jj} (invariant mass) OK within systematic uncertainties

 p_{Tjj} not good \rightarrow introduce additional systematic uncertainty

Matrix elements: why?

- We can improve the sensitivity of the measurement by:
 - Adding information from other event kinematics
 - Building a discriminant that has bins with higher S/B or with larger difference in shape between signal and background
- Matrix element calculations
 - Sensitive technique in WH and single top searches
 - This analysis based on those implementations

Matrix element calculation

Given 4-vectors of incoming and outgoing partons in an interaction, can calculate differential cross section of a certain production process:

$$d\sigma = \frac{(2\pi)^4 |\mathcal{M}|^2}{4\sqrt{(\vec{q_1} \cdot \vec{q_2})^2 - m_1^2 m_2^2}} \times d\Phi_n$$

For each event, determine this differential cross section for signal and background processes

Then define "event probability" (not really a probability): $P \sim \frac{d\sigma}{\sigma}$

But: no way to know initial parton 4-vectors and measurement of final state is not exact → Integrate over unknowns

$$P(x) = \frac{1}{\sigma} \int d\sigma(y) dq_1 dq_2 f(q_1) f(q_2) \underline{W(y, x)}$$

Initial state: Parton distribution functions Final state: transfer function

Transfer function

- Transfer functions go from measured quantities to partonlevel information
- Lepton: assume energy and angles measured exactly
- Jets: assume angles measured exactly, define double Gaussian transfer function between jet and parton energies
- Neutrino: calculate transverse momentum at each step of parton integration; integrate over all possible values of zmomentum

Matrix elements

- MadGraph used for the calculation
- Calculate matrix elements for WW, WZ, Wgg, Wgj, Wbb, Wcc, Wcg, and single top
- No explicit calculation for Z+jets, tt, or QCD multi-jet background
 - These require some treatment (additional integration) associated with missing or mis-ID'ing a jet or lepton

Discriminant

- The "probabilities" are turned into a discriminant (Event Probability Discriminant or EPD)
- EPD = $P_{sig}/(P_{BG}+P_{sig})$

$$- P_{sig} = P_{WW} + P_{WZ}$$

- P_{BG} = sum of probabilities of BG processes
- Some optimization of this discriminant to give greatest difference in shape between signal and background
 - Coefficient in front of probability for each process

- Signal does not peak at 1
 - Background events often look signal-like and signal events often look background-like
- Difference in shape is still usable

Discriminant (II)

Stacked templates

EPD for data and MC in "control regions" Mjj < 55 and Mjj > 120

Effectiveness of the EPD

Extracting the cross section

- Fit EPD shape in data with sum of templates from models
 - Binned maximum likelihood fit
- W+jets normalization very well constrained by first bins

Systematic uncertainties

- Signal normalization (acceptance)
 - Initial and final state radiation
 - Parton distribution functions
 - Jet energy scale
 - Integrated luminosity
 - Trigger / ID efficiencies
- Signal shape
 - Jet energy scale
- Background normalization
 - Integrated luminosity
 - Trigger / ID efficiencies
 - Theoretical cross sections
- Background shape
 - JES
 - Q² scale
 - Mismodeling of $p_{T_{jj}}$

Source	Expected contribution WW+WZ cross section uncertainty
Statistics	14%
JES	8%
Q^2	7%
ISR / FSR	4%
Luminosity	6%
JER	small
p _{Tjj} mismodeling	small
PDFs	small
Efficiency	small
Total systematics	16%
Total	21%

Systematic uncertainty is larger than statistical

Result: cross section

p-value calculation

- Does signal represent significant deviation from model with σ(WW+WZ)=0?
 - Test signal+background (s+b)
 hypothesis and backgroundonly (b) hypothesis
- Define test statistic as likelihood ratio, Q=L(s+b)/L(b)
- Generate pseudo-experiments for s+b and b hypotheses
 - Systematic uncertainties taken into account by varying them in each pseudo-experiment

- Expected p-value: 5.1σ (probability that a b pseudo-experiment is more signal-like than the median s+b pseudo-experiment)
- Observed p-value: 5.4σ (probability that a b pseudo-experiment is more signal-like than the data)

What about fitting the dijet mass?

- "Simpler" analysis: actually just more intuitive quantity
- Identical treatment of event selection, systematic uncertainties, and fit as in matrix element analysis
- Effect of systematic uncertainties in cross section extraction very different
 - JES and Q² constrained by fit → smaller uncertainties when fit to M_{jj} than ME
 - Uncertainty due to p_{Tjj} mismodeling is larger

Results with dijet mass

Expected results

- Sensitivity: 4.6σ (5.1 σ with ME)
- Cross sectionuncertainty: 19%(21% with ME)
- Observed results
 - $-\sigma(WW+WZ) = 11.8^{+3.0}_{-2.7} \text{ pb}$
 - Significance: 3.5σ

Matrix element		
$16.5^{+3.3}_{-3.0} \text{ pb}$	$11.8^{+3.0}_{-2.7} \text{ pb}$	$15.1 \pm 0.8 \text{ pb}$

Conclusions

- We have observed WW+WZ → lvjj and measured the WW+WZ production cross section
 - Technique based on matrix element calculations gives sensitivity needed for observation
 - Signal significance: 5.4σ
 - $-\sigma(pp \to WW + WZ) = 16.5^{+3.3}_{-3.0} \text{ pb}$
- Measurement is already systematically limited
- Measurement with dijet mass is compatible with ME result
 - Less sensitive, but smaller cross section uncertainty
- Continued progress towards Higgs!
 - WW+WZ observation is validation that we can find small signal in large backgrounds with sophisticated analysis
 - Analysis improves understanding of backgrounds and systematics for WH → lvbb

Backup

CDF at the Tevatron

- $p\bar{p}$ collider at $\sqrt{s} = 1.96$ TeV
- Recent stable operation with increasing instantaneous luminosity

- Collider detector:
 - Charged particle tracking
 - Electromagnetic and hadronic calorimetery
 - Muon system

95% CL Limit/SM

Higgs searches at the Tevatron

March 2009: Exclusion at 95% confidence level of Higgs boson for $160 < M_{H} < 170 \text{ GeV}$

With expected future datasets and improvements in analyses, could reach Standard Model sensitivity for M₁ = 115 GeV

Jet eta

Mismodeling shape systematic

JES uncertainty, WW

JES uncertainty, W+jets

Q² scale uncertainty

Likelihood fit to extract cross section

- Bayesian fitting procedure
 - Systematics treated as nuisance parameters, integrated over in likelihood function
 - Flat prior p.d.f. in WW+WZ cross section
 - Nuisance parameters have
 Gaussian priors
- Pseudo-experiments with various expected WW+WZ cross sections as input
 - Fit has linear behavior,
 expected pull distribution

Result in channels

Central electrons		
$15.9^{+4.2}_{-4.5} \text{ pb}$	$19.8^{+3.3}_{-5.4} \text{ pb}$	$10.7^{+7.6}_{-5.4} \text{ pb}$

Another CDF measurement

- Using lower pT cuts on leptons, and imposing pTjj > 40 GeV, have smoothly falling dijet mass distribution in backgrounds
 - Can see peak in data
- Cross section measurement is compatible with our result
- Difficult to compare details with our analysis
 - Only ~30% overlap in signal samples
 - Different fitting procedures

ATLAS work

ATLAS work: tile calorimeter

Testbeams

- Took shifts in 2003 and 2004
- Analysis of standalone (only TileCal) testbeam in 2003 found
 - ~1.4% module-to-module uniformity of response to hadrons
 - Public ATLAS note: ATL-TILECAL-PUB-2006-008
 - Included in NIM paper: Testbeam studies of production modules of the ATLAS Tile Calorimeter, Nucl. Instr. and Meth. A606, 362 (2009).
- Contributed to analysis of combined (full slice of ATLAS) testbeam in 2004
 - NIM paper: Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV, Nucl. Inst. and Meth. A607, 372 (2009).
- Charge injection calibration system
 - Careful investigation of properties of TileCal electronics
 - ATLAS note: ATL-TILECAL-INT-2008-002

ATLAS work cont'd

- In charge of TileCal "data" quality validation 2005-2006
 - Part of commissioning calorimeter in situ after its move into the cavern
- Studied use of photon-jet events for establishing jet energy scale and its systematic
 - Included in CSC book: G. Aad, et al., Expected Performance of the ATLAS
 Experiment: Detector, Trigger and Physics, arXiv:0901.0512; CERN-OPEN-2008-020.
 - ATLAS note: ATL-PHYS-INT-2009-014
- Preparation of differential dijet mass cross section measurement
 - Studied sensitivity to quark compositeness with early data